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COMPUTATION OF RENORMALIZATION COEFFICIENTS

FOR QUARK BILINEARS

Non-perturbative computations has been the preferred choice for
quite a long time, but:

» strictly speaking multiplicative renormalizability is proved only in
Perturbation Theory; and

» fermion bilinears are either finite or only logarithmically
divergent. Since there are no power divergences PT must work.

DRAWBACKS OF PT

» perturbative series are badly convergent.
» go to high order

» diagrammatic Lattice PT is cumbersome;

» use an automated technique




A SKETCH OF NSPT

» Let the system evolve according Langevin dynamic in a
“fictitious” time ¢

U (z,t) = {—iVS[U(x,t)] —in(z,t)} U(z,t)

where (n(z,1)) =0 (n(x, n(a’, ) = 20(x — a')3(t — t).
» By expanding the link in a power series one gets a system of
equations to be truncated at a given order (Stochastic PT).

» The differential equations can be traded for integral ones (in this
way one would get diagrams); in out approach the integration is
performed numerically on a computer.

» Inverting the fermionic (Dirac) operator turns into inverting a
series:
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RI-MOM’ SCHEME

Starting from Green functions (in Landau gauge)

Gep) = [ do ol TG b
vertex functions are obtained by amputation

Ir(p) = S~ (p) Gr(p) S~ (p).

The quark field renormalization constant has to be computed from
the condition

r(pS—1
Zq(u,a) = —7;112T(pp2(p))|pz_#2.

After projecting on tree-level structure
Or(p) = Tr (Po.Tr(p))
one enforces renormalization conditions that read

ZOF (M,Q)szl(ﬂv a)OF(p)|p2=u2 =1



ZERO QUARK MASS AND LOGARITHMIC DIVERGENCIES

In order to have a mass-independent scheme, all this is defined at zero
quark mass: this requires knowledge of the critical mass (known up to
2-loop, 3-loop as a byproduct).
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Critical mass is computed from the propagator:
-1 } R .
oM S(pamcraﬂil)il = Zp+mW( ) E(pamcraﬂil)

E(Ova’r‘wB_l) = mc"‘

MM = —3.94(4) D = —0.78(2)

Advantage of RI-MOM’ scheme: logarithmic contributions to quark
bilinears can be inferred from continuum computations (I = log(ua)?)
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LATTICE ARTIFACTS
A prototypal fitting form of ours reads:
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» the a — 0 limit can be obtained by means of the hypercubic
expansion; R

» by computing Or(p, pL,v) on different volumes we can account
for finite size corrections;

» performing a combined fit we account for the limits a — 0 and
L — oo simultaneously.

+cap? + AOr (pL) + O(a?)

aF(ﬁaPL”) =C + C2 Zﬁg + C3




RESULTS

» n;=2 tree-level Symanzik [ M. B., F. Di Renzo]

analytical

one-loop one-loop two-loop | three-loop
Zs | -0.6893 -0.683(7) | -0.777(24) | -1.96(14)
Zp | -1.1010 | -1.098(11) | -1.299(38) | -3.19(21)
Zy | -0.8411 -0.838(6) | -0.891(17) | -1.870(65)
Za | -0.6352 -0.633(4) | -0.611(16) | -1.198(57)

» ny=4 Iwasaki [M. B., F. Di Renzo,

M. Hasegawa
M. Hasegawa)

analytical

one-loop | one-loop | two-loop | three-loop
Zs | -0.4488 | -0.442(6) | -0.170(11) | -0.33(11)
Zp | -0.7433 | -0.739(7) | -0.202(13) | -0.58(11)
Zy | -0.5623 | -0.561(7) | -0.067(12) | -0.367(61)
Zy | -0.4150 | -0.419(6) | -0.033(12) | -0.236(56)

(results are available also for ny=0)




SUMMING THE SERIES

We can sum the series and compare with non perturbative results
(Symanzik 8 = 4.05) [M. Constantinou et al. JHEP08(2010)068]

| Zv | Za | Zs | Zr |

NSPT 0.710(2)(28)| 0.788(2)(18)| 0.753(4)(30) | 0.601(5)(48)
ETMC(M1)| 0.659(4) 0.772(6) 0.645(6) 0.440(6)
ETMC(M2)| 0.662(3) 0.758(4) 0.678(4) 0.480(4)

(Iwasaki 8 = 2.10) [arXiv:1403.4504 [hep-lat]]

| 5 1% 1% %]
NSPT 0.677(9)(39)| 0.769(9)(25)| 0.712(14)(36)| 0.538(15)(63)
ETMC(M1)| 0.655(03) 0.762(04) 0.700(06) 0.516(02)
ETMC(M2)| 0.657(02) 0.752(02) 0.749(03) 0.545(02)

» thee-loop contribution is relatively important: quite large
truncation errors

» fair agreement between PT and non PT for Iwasaki action and
finite Symanzik

» deviation between PT and non PT in Symanzik divergent



We can assess irrelevant effects by discarding the continuum limit and
finite size contributions:

Or (6 —c”Zpg+c“§p"+c$ﬁi+0( )
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The resummed quantity Z B8 1 Z p,v) can be regarded as

the irrelevant contributions to Zr

oo o

Finite size effects can be reconstructed to a fair accuracy provided one
fits terms compliant to the lattice symmetries.



BOOSTING THE RESUMMATIONS

Re-express the series as expansions in different couplings:

can we find better convergence proprieties? J
=1 —1
’ ‘ xo =15 = | 71 = —ﬁlog(P) ‘ Ty = ﬂ? ‘ (M1) ‘ (M2) ‘
Zy | 0.686(21) 0.688(17) 0.661(55) | 0.659(4) | 0.662(3)
Zy | 0.773(12) 0.775(9) 0.763(26) | 0.772(6) | 0.758(4)
Zg | 0.727(29) 0.726(27) 0.705(49) | 0.645(6) | 0.678(4)
Zp | 0.558(45) 0.558(41) 0.526(73) | 0.440(6) | 0.480(4)

where P is the 1 x 1 plaquette.




BPT apparently solves the problem of the discrepancies for Zy
and Za;
discrepancies are still there for Zg and Zp:

» should even higher order terms be included?

» could non-perturbative computations suffer from finite volume
effects (any interplay between IR and UV effects)?

SOME GENERAL REMARK

we put forward a method to assess finite size effects: there is in
principle no reason why one should not attempt the same in the
non-perturbative case;

high-loop computations can provide a new handle to correct
non-perturbative computations with respect to irrelevant
contributions.




CONCLUSIONS

We computed 2 and 3-loop Renormalization Constants for quark
bilinears in different regularizations.

» NSPT provides an approach independent w.r.t. non perturbative
computations (different systematic effects);

» in principle there is no constraint on computing finite constants;

» in divergent constants we are limited to 3-loop order because of
continuum computations;

» NSPT provides a new method to correct non-perturbative
computations with respect to irrelevant contributions.
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TAMING THE LOGS

Z’s expansion is in the form
(1)
= = —(@
Z(poo) =14 du(ag  do(l) = _d, T
n>0 i=0

By differentiating w.r.t log(ua)2 one obtains the anomalous dimension

1d
Y= ialogZ sy & nZ>O’Yn

that depends only on the scheme.

PROCEDURE
» match the two expansion above (all log’s must cancel out);
» re-express the expansion in the bare coupling «p;

» subtract divergences from Z’s before performing fits.




FINITE LATTICE SPACING EFFECTS

Consider the case of quark field renormalization constant Z,.
Hypercubic symmetry fixes the (expected) form of self energy:

i ZwTrspm TE) = ZZ%IM (206) + 2250 (6) + 5P () +

fl(j') (p) can be expanded in hypercubic invariants
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The only term surviving the ¢ — 0 limit is Cgo)'



FINITE VOLUME EFFECTS

If there were no finite size effects, point
s
with the same p, = T M should join in a

(9 U R S I A O perfectly smooth way.
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On a dimensional ground we expect a pL dependance. We can rewrite

S,ppLat) = S50, 1) + (S 5.pL. i) — (5,00, 1))

5
S, (p, 00, i) + AZ, (B, pL, 1)

to a first approximation we neglect corrections on top of corrections:
AY,(p,pL, i) ~ AX,(pL).

2mny,

Since p, L =
are affected by the pL effects

L = 2mn,: at fixed n-tuple different lattice sizes



